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1. Find the order of growth ρ of the following entire functions.

(a)
f(z) = P (z)eQ(z),

where P and Q are polynomials of degree p and q respectively.

(b)
ee
z

.

(c)

cos z
1
2 =

∞∑
n=0

(−1)n
zn

(2n)!
.

Proof. With A,B,C understood to be suitable real positive constants.

(a) For any r > q, we have

|f(z)| = |P (z)| · |eQ(z)| ≤ A1e
B1|z|r−q ·A2e

B2|z|q ≤ AeB|z|
r

so ρ ≤ q.
If p = −∞ (i.e. P (z) ≡ 0), then ρ = −∞.
Now suppose P is not identically zero, then |P (z)| ≥ C for some
positive constant C for all z with |z| large. By modifying P (z) (and
the constant C), we may assume Q(z) = zq + a1z

q−1 + · · ·+ aq. We
have

|f(z)| = |P (z)| · |eQ(z)| ≥ CeRe(Q(z)).

If we take z = t to be positive real number, we have that for t large,

Re(Q(t)) ≥ 1

2
tq.

Whence for t large enough,

|f(t)| ≥ Ce 1
2 t
q

Thus for any r < q, we have

lim
t→∞

et
r

|f(t)|
= 0.

We see that ρ ≥ q, hence ρ = q
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(b) For any r > 0, we have

lim
t→∞

et
r

|f(t)|
= lim
t→∞

et
r−et = 0.

Whence ρ =∞.
(c)

| cos z
1
2 | ≤

∞∑
n=0

|z|n

(2n)!

≤
∞∑
n=0

(|z| 12 )n

n!

=e|z|
1
2 .

Therefore, ρ ≤ 1
2 . On the other hand, it can be see easily that

(nπ + 1
2 )2 are zeroes of f for any integer n. But

∞∑
n=1

1

((nπ + 1
2 )2)

1
2

=
1

π

∞∑
n=1

1

n+ 1
2

=∞

We see that ρ ≥ 1
2 , hence ρ = 1

2 .

2. Prove that there exists constant C > 0 such that∣∣∣∣∣1z +

∞∑
n=1

2z

z2 − n2

∣∣∣∣∣ ≤ 1 + C

∞∑
n=1

|y|
y2 + n2

.

for all z = x+ iy with |x| ≤ 1
2 and |y| ≥ 1.

Proof. First of all, |z| ≥ |y| ≥ 1, so

1

|z|
≤ 1.

Also,

|z2 − n2|2 =(x2 − y2 − n2)2 + (2xy)2

≥ (y2 + n2 − 1

4
)2

≥ 1

4
(y2 + n2)2.

Finally, we have 2|z| ≤ 1 + 2|y| ≤ 3|y|. Therefore,∣∣∣∣∣1z +

∞∑
n=1

2z

z2 − n2

∣∣∣∣∣ ≤ 1 + 6

∞∑
n=1

|y|
y2 + n2

.
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3. Show that if τ is fixed with Im(τ) > 0, then the Jacobi theta function

Θ(z|τ) =

∞∑
n=−∞

eπin
2τe2πinz

is of order 2 as a function of z.

Proof. Let ρ be the order of growth. Let t = Im(τ) > 0. We have,

|Θ(z|τ)| ≤
∞∑

n=−∞
eπ(−n

2t+2n|z|).

Note that,
0∑

n=−∞
eπ(−n

2t+2n|z|) ≤
0∑

n=−∞
eπ(−n

2t) = C1.

Next, note that

−n2t+ 2n|z| ≤ 1

2
n2t

for |n| ≥ 4|z|
3t , so ∑

n≥ 4|z|
3t

eπ(−n
2t+2n|z|) ≤

∞∑
n=1

eπ(−
1
2n

2t) = C2.

Therefore,

|Θ(z|τ)| ≤ C +

b 4|z|3t c∑
n=1

eπ(−n
2t+2n|z|)

≤ C +

b 4|z|3t c∑
n=1

e2nπ|z|

≤ C +
4|z|
3t

e
8π
3t |z|

2

.

Hence, ρ ≤ 2. Finally, it can be see easily (you may find a proof in tutorial
2) that

Θ(z + nτ |τ) = e−πin
2τΘ(z|τ).

hence ρ ≥ 2 provided we can find some z so that Θ(z|τ) 6= 0. Its existence
can be seen by showing the Fourier coefficients of Jacobi Theta functions
are nonzero, for example ∫ 1

0

Θ(t|τ)dt = 1 6= 0.

4. Find the Hadamard products for:
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(a) ez − 1

(b) cos(πz)

Proof. We will make use of the Hadamard product for sin z.

sin z = z

∞∏
n=1

(
1− z2

(nπ)2

)
= z

∏
n 6=0

E1

(
z

nπ

)

(a)

ez − 1 = −2ie
z
2 sin(i

z

2
)

= −2ie
z
2 (i

z

2
)
∏
n 6=0

E1

(
iz

2nπ

)

= ze
z
2

∏
n6=0

E1

(
z

2nπi

)

(b)

cos(πz) =
sin(2πz)

2 sin z

=
2πz

∏
n6=0E1( 2z

n )

2πz
∏
n 6=0E1( zn )

=
∏
n∈N

E1

(
z

n+ 1
2

)

5. Deduce from Hadamard’s theorem that if F is entire and of growth order
ρ that is non-integral, then F has infinitely many zeros.

Proof. Suppose on the contrary that F finitely many zeroes and finite
growth order ρ. Then by the Hadamard’s theorem,

F (z) = P (z)eQ(z)

for some polynomials P and Q. But then ρ must be an integer by question
1a)
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